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This paper describes an approach to lacunarity which adopts the pattern under analysis as the reference for
the sliding window procedure. The superiority of such a scheme with respect to more traditional methodolo-
gies, especially when dealing with finite-size objects, is established and illustrated through applications to
diffusion limited aggregation pattern characterization. It is also shown that, given the enhanced accuracy and
sensitivity of this scheme, the shape of the window becomes an important parameter, with advantage for
circular windows.
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Several interesting natural and abstract phenomena and
structures are characterized by intricate geometries whose
properties can vary along space and/or time �1–5�. Chaotic
dynamics, for instance, is known to be organized in terms of
fractal attractors �6�, which are characterized by self-
similarity or self-affinity over spatial scales. Given that great
part of the systems exhibiting particularly interesting behav-
ior involves such complex geometrical organizations, it be-
comes necessary to have proper and effective measurements
allowing the objective and meaningful quantification of spe-
cific geometrical features, such as regularity, density, self-
similarity, and translational invariance. One important point
to be highlighted at the outset is the fact that such measure-
ments are almost invariably incomplete or degenerated, as a
consequence of the mapping from a higher dimensional
space, where the structures are embedded, into a lower di-
mensional space. Therefore, while it is often unfeasible to
incorporate all information into geometrical measurements,
they must be capable of expressing the features of particular
interest with respect to each specific application. For in-
stance, the characterization of the distribution of voids in
different sizes and shapes is a major factor to be considered
while specifying the mechanical properties of a metal bar, for
example, establishing an intrinsic relationship between topo-
logical or geometrical properties and physical strength that
can be, to some extent, captured by its porosity value in case
a parsimonious description is needed. By providing accurate
and meaningful information about the specific geometrical
properties of interest, suitable measurements of complex
structures allow the construction of statistical models of the
analyzed objects and the identification of prototypes, as well
as the taxonomic organization of several types of patterns.
Such possibilities are important not only for practical appli-
cations, but also for theoretical studies aimed at investigating
critical phenomena and universality �7�.

One of the best known measurements of complex struc-
tures is the fractal dimension, introduced by Mandelbrot, see
�8�. Although several alternative definitions of such a mea-
surement have been available for a long time �e.g., �9,10��,
they all assume self-similar �or self-affine� symmetries while

sharing the ability to quantify the spatial “complexity” of
given patterns. Although powerful and widely used, the frac-
tal dimension is inherently a degenerated feature, implying
an infinite amount of distinct patterns to be mapped into the
same fractal dimension. The concept of lacunarity �7,8,11�
has been introduced and used as a means to complement the
quantification of complex geometries provided by the fractal
dimension. In particular, the lacunarity quantifies the degree
of translational invariance of the analyzed objects, with low
values of lacunarity indicating high levels of such an invari-
ance. For instance, a pattern with uniform spatial distribution
of voids will lead to small lacunarity values. One especially
interesting property of the lacunarity, which is not shared by
the traditional fractal dimension, concerns the fact that it is
defined in terms of a scale parameter, namely the size of the
sliding window which is used to analyze the patterns. As a
consequence, a lacunarity function, rather than a single scalar
value, is obtained which characterizes the translational in-
variance with respect to several spatial scales, providing en-
hanced information about the geometrical properties of the
analyzed patterns. A particularly representative illustration of
the potential of the combined use of the fractal dimension
and lacunarity is related to the characterization of DLA struc-
tures which, by being organized around the initial “seed”,
tend to exhibit distinct geometrical properties around that
seed and also at the DLA boundaries �12�.

Despite the promising potential of the lacunarity as a
measurement of complex patterns, some remaining intrinsic
difficulties have constrained its applications. Indeed, while
lacunarity and fractal dimension are often successfully con-
sidered for the characterization of infinite/periodical struc-
tures, the treatment of finite and isolated objects, implied by
many relevant natural situations, has received relatively little
attention in the literature. The key issue here is that, when
dealing with finite-size objects, one is interested in their in-
trinsic geometrical properties, preferably in a way invariant
to translations and rotations. By depending substantially on
the placement and orientation of the finite object along the
workspace, the traditional approach to lacunarity implies a
high degree of arbitrariness, in the sense that completely dif-
ferent values can be obtained for the same object. The adop-
tion of the object as a reference system for calculation of the
lacunarity allied to the choice of circular windows, as
adopted in the present article, completely avoid such a prob-*Electronic address: marconi@if.sc.usp.br
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lem, providing invariant characterization of finite-size ob-
jects.

The current work investigates the use of the analyzed pat-
tern itself as the reference for the windowing procedure un-
derlying lacunarity estimation. Although such an approach
has been considered previously �11�, the restricted conditions
adopted for its validation �Cantor dust� implied its premature
dismissal. An interesting informal interpretation of this ap-
proach is in understanding the structure of interest as being
measured by an inhabitant of the object who, therefore, can
only sample a circular region around each of its positions.
We show in the following that this self-reference windowing
system does allow a series of superior features, including
enhanced objectivity, accuracy, and sensitivity, also implying
the shape of the sliding window to become critical for proper
operation. It is shown that such an alternative procedure al-
lows the additional bonus of enhanced computational speed.

I. METHODOLOGY

One of the most traditional approaches to estimate the
lacunarity of a set of objects is known as the sliding-box
algorithm, �e.g., �11��. Provided the set under analysis is
mapped into an orthogonal lattice, henceforth called the
workspace, a square window of side l is made to slide
through the entire lattice while the number of pixels which
falls inside it is determined. Let n�s , l� be the number of such
windows which contain s pixels and N�l� be the total number
of windows of size l. The probability of finding a box of size
l with s pixels is given by Q�s , l�=n�s , l� /N�l�, and the la-
cunarity ��l� of such a pixel distribution can be expressed as

��l� =
� s2Q�s,l�

�� sQ�s,l��2 =
�2�l�
�2�l�

+ 1, �1�

where � and �2 are the mean and variance of Q�s , l�. Al-
though popular, such a procedure involves some arbitrariness
related to the difficulty of choosing the several involved pa-
rameters such as the position and size of the workspace and
the shape of the sliding window.

Figure 1 shows the traditional lacunarity curves numeri-
cally obtained for rotations of the considered pattern, shown
in the inset, considering both square and circular windows.
We will adopt henceforth the term window size, which for a
circular window refers to its radius l and for a square win-
dow corresponds to half of its side, i.e., L /2. A substantial
variation is observed for both square and circular windows.
Figure 2 presents three lacunarity signatures obtained for
three distinct relative sizes of the working space and object.
It is clear from these curves that the choice of proportionality
ratio between the workspace and the object size has great
effect in defining the lacunarity values. The curves in Fig. 3
were obtained for a fixed working space size, but with the
object �a cross shown in the inset� placed at different relative
positions, given by the parameter �. A strong variation of the
obtained lacunarity values was again observed, indicating ar-
bitrariness also regarding the object position. Therefore, the
large variations implied by the above arbitrary choices un-
dermine the potential of the lacunarity as a sensitive mea-

surement of the spatial distribution of the analyzed finite
structures.

The arbitrariness identified previously can be completely
removed by the use of the structure under analysis as the
reference for placing the sliding windows. In other words,
the window is placed at each of the points of that structure,
eliminating the influence of the workspace, which can now
be objectively defined by considering the maximum sliding-
window size and the structure under analysis. The remaining
parameters are, therefore, reduced to the shape of the sliding-
window and the spatial-scale interval of the analysis �i.e., the
range of window sizes�, accounting for enhanced objective-
ness of the whole approach. The self-referred approach to
lacunarity estimation is illustrated in Fig. 4, including some
�labeled a, b, c and d� of the many required positions of the
sliding window. The total number of these windows N�l�
actually matches the area of the cross �i.e., the number of

FIG. 1. The standard implementation of the lacunarity concept
for finite objects characterization yields different lacunarity signa-
tures depending on the rotation �by an angle �� of the object under
analysis shown in the inset.

FIG. 2. The influence of the relative size of the object with
respect to the workspace D /d on the values of the lacunarity, as
measured by the standard approach for the object shown in the
inset.

RODRIGUES, BARBOSA, AND COSTA PHYSICAL REVIEW E 72, 016707 �2005�

016707-2



elements or pixels in the cross, see Fig. 4�. Note that the
windows b and c overlap, i.e., there is a portion of the object
which is covered by both windows, a situation which often
occurs. A zoomed version of the window d is presented in
the inset e, showing the exact portion of the cross which is
covered by this window, i.e., the 198 elements inside the
circle.

Consider the case of a simple object �a square�, illustrated
in gray in Fig. 5, for which it is possible to calculate analyti-
cally the self-referred lacunarity. For windows size r within
the interval �0,L /2�, the functions Ai

1�x ,y ,r�, giving the area
of the object enclosed by the sliding window as a function of

the window size, are given by the following equations:

AI
1�x,y,r� = 4r2,

AII
1 �x,y,r� = 2r2 + 2ry ,

AIII
1 �x,y,r� = r2 + �r + �L − y��x + r�L − y� .

The mean value of the area enclosed by the sliding window
as a function of r is determined by the integration of the
functions Ai

1 along their respective domains �see Fig. 5�, di-
vided by the total area of the object, given as

�1�r� =

�
x
�

y
�

i

Ai
1�x,y,r�dx dy

�
x
�

y

dx dy

=
r2�r − 2L�2

L2 .

The corresponding variance is calculated in a similar way.
The calculation of the area of the object inside a window

of size r, with r� �L /2 ,L�, implies the division of the object
into specific regions which are analogous, although different,
from those shown in Fig. 5 �see also �13��. The calculation of
the mean and variance values is straightforward. The final
expression for the whole interval self-referred lacunarity is
given in the following:

��r� = �
4L2�5r − 6L�2

9�r − 2L�4 , r � �0,L/2�;

L2�2r3 − 6rL2 + L3�2

9r4�r − 2L�4 , r � �L/2,L� .� �2�

Figure 6 shows a plot of the values obtained by using Eq. �2�
for a square of size L=100 pixels.

In order to better illustrate the invariance of the self-
referred lacunarity, it has been applied also for the cross-
shaped object shown in the upper left portion of Fig. 7. Its
self-referred lacunarity considering diverse rotation angles,

FIG. 3. The effect of translation by � on the lacunarity of the
object shown in the inset, as calculated by the standard procedure.

FIG. 4. The self-referred lacunarity method with circular sliding
window for a simple object �a cross�. One can see in the zoomed
inset the part of the object, represented by black dots, which is
being considered by window d.

FIG. 5. A simple shape �a square, shown in gray� and the re-
gions for the analytical calculation of the self-referred lacunarity for
r� �0,L /2�. The sliding windows in the region I fall completely
within the object, while the windows in the cases of regions II and
III always have a portion falling outside the object.
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two sliding window shapes, as well as the respective analyti-
cal result, are presented in that same figure. The analytical
result was obtained by decomposing the cross into several
parts and solving, analytically, the sums implied by the defi-
nition in Eq. �1�. The full details of such a calculation, that
follows the same reasoning as described above for the square
object, can be found in the supplementary material to be
found in �13�. In the main graph we can easily spot two main
groups: one associated with the square sliding window and
another, more tightly grouped, associated with the circular
window. Among the more widespread group, one can see a
solid line representing the analytical calculation expected for
the self-referred method, which matches precisely the nu-
merically evaluated curves. The inset provides a zoomed

view of the variance implied by the use of a square sliding
window, which is particularly critical if rotational invariance
is required. Observe that the object �a cross� is shown with-
out reference to the workspace because the results are com-
pletely independent of such a choice.

II. RESULTS

An important feature of many quasi-self-similar shapes is
the existence of a descriptor, such as the fractal dimension,
which can provide a characteristic signature for the shape
regardless of the number of aggregated particles. The la-
cunarity represents one such a descriptor which has been
proposed in order to complement the fractal characterization
�2�. Figure 8 illustrates an interesting property of the self-
referred lacunarity with respect to the standard procedure for
DLA generation �14�, corresponding to the fact that the peak
value of the lacunarity curves obtained for DLAs with in-
creasing number of particles tends to converge to a stable
value. Such a value suggests itself as a possible measurement
for characterizing the whole sequence of produced individual
DLA shapes.

Another important issue is related to the sensitivity of
both standard and new approach to small variations of the
object. We consider this important perspective through an
experiment where the object is perturbed by increasing Pois-
son noise. This was performed by distributing through the
workspace black points with increasing densities �n �indi-
cated in Figs. 9 and 10�. The outcome of such a study is
presented in Figs. 9 and 10. The traditional approach to la-
cunarity �for an object with the shape of a cross� is shown in
Fig. 9 for several levels of noise quantified by the respective
Poisson rates �. Figure 10 shows the corresponding curves
for the self-referred lacunarity for the respective degree of
noise. The traditional lacunarity is characterized by maxi-
mum relative variation of 0.73 against 0.13 for the proposed
approach. Such a result suggests that the self-referred
method present enhanced robustness when compared to the
traditional lacunarity.

In order to investigate the potential of the self-referred
lacunarity approach for pattern discrimination, an experiment

FIG. 6. The analytically calculated self-referred lacunarity curve
for a square with size L=100 pixels.

FIG. 7. Self-referred lacunarity signatures obtained for a cross
considering square and circular windows, indicated by the arrows in
the bottom of the figure. The simple cross was adopted in order to
allow comparison with the analytical expected lacunarity, which is
also shown in this figure. While the square windows with different
orientations led to substantially different lacunarities, the circular
windows were almost completely invariant to rotations, producing
nearly undistinguishable lacunarity signatures. The same rotation
angles �i.e. 0° , 15° , 30° , 45° , 60° , 75° � were used for both
square and circular windows.

FIG. 8. The effect of the number of aggregated particles on the
self-referred lacunarity value.
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has been carried out in which two differently grown sets of
DLA structures �14,15� with 30 samples each, are analyzed
by the self-referred approach described in this paper. These
two types of DLAs correspond to the standard DLA, already
considered for the example in Fig. 8, and the potential DLAs
�15�. The latter type of DLA is characterized by the incorpo-
ration of an equilibrium electric potential around the growing
structure, which is obtained by solving the Laplace equation.
The results of this experiment are summarized in Fig. 11,
which show two clearly separated clusters �as illustrated by
the straight dashed frontier�, with some overlap at their bor-
ders. Such an overlap is a consequence of some degree of
similarity between the two types of structures, which was
detected by the considered measurement. It is observed that,
out of the two considered measurements, the peak lacunarity
value �represented along the x axis� contributed more effec-
tively to the separation between the two classes of objects.

III. COMMENTS AND CONCLUSIONS

The traditional approach to lacunarity estimation involves
sliding a box throughout the space where the structure under
analysis is contained, whereas the application of such a pro-
cedure implies substantial arbitrariness when applied to gen-
eral shapes and sets of objects characterized by finite size. Of
particular importance is the fact that there is no established
criterion for defining the positions of the sliding box along
the space under analysis, so that different implementations
will often converge to different results. We have shown that
the adoption of the objects under analysis as the reference for
positioning of the sliding window provides not only a fully
objective procedure for lacunarity estimation, but also en-
hances its potential for discriminating between different
classes of patterns. Such effects have been demonstrated
with respect to the important problem of DLA pattern forma-
tion and analysis. In addition, the stability of the self-referred
approach has been investigated with respect to Poisson per-
turbations, suggesting improved robustness. Moreover, the
enhanced signature provided by the object-referred frame-
work considered in this article makes the choice of the win-
dow geometry an important issue. In particular, we have
shown that circular �spherical� windows provide superior
properties when used for self-referred lacunarity estimation
by promoting the isotropy of the analysis. An additional ad-
vantage allowed by the considered lacunarity definition is its
substantially reduced demand for computational resources.
As the sliding window is constrained to the object under
analysis, the total of integrations along the window is re-
duced from a large area around the object to its own area,
which often imply savings of an order of magnitude. Such
results suggest the self-referred lacunarity as an interesting
methodology, especially when considered jointly with the
fractal dimension, for the objective quantification of geo-
metrical properties of a broad variety of objects in the most
diverse theoretical and applied areas. Of particular interest is
the characterization of biological cells, such as neurons �e.g.,
�16–18��, as well as organs �e.g., heart� and even the shape of

FIG. 9. The resilience of the standard lacunarity against pertur-
bation by Poisson noise with varying density �.

FIG. 10. The resilience of the proposed self-referred lacunarity
against perturbation by Poisson noise with varying density �.

FIG. 11. A scatterplot defined by functionals extracted from the
lacunarity curve, namely, the global mean and the local maximum
values. The plot shows that the two types of DLA considered can be
reasonable separated by the shown dashed line.
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individuals �e.g., viruses and bacteria�. Applications to the
characterization of astronomical structures such as galaxies
�e.g., �19��, which incorporate patterns of voids, may also
particularly benefit from the invariance properties of the self-
refered lacunarity. It should be finally noted that the exten-
sion of this methodology to higher dimensions is straightfor-
ward, though at the cost of additional computational
resources.
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